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Designer heterostructures have offered a very powerful strategy to create exotic superconducting states by
combining magnetism and superconductivity. In this Letter, we use a heterostructure platform combining
supramolecular metal complexes (SMCs) with a quasi-2D van der Waals superconductor NbSe2. Our
scanning tunneling microscopy measurements demonstrate the emergence of Yu-Shiba-Rusinov bands
arising from the interaction between the SMC magnetism and the NbSe2 superconductivity. Using x-ray
absorption spectroscopy and x-ray magnetic circular dichroism measurements, we show the presence of
antiferromagnetic coupling between the SMC units. These result in the emergence of an unconventional
3 × 3 reconstruction in themagnetic ground state that is directly reflected in real spacemodulation of the Yu-
Shiba-Rusinov bands. The combination of flexible molecular building blocks, frustrated magnetic textures,
and superconductivity in heterostructures establishes a fertile starting point to fabricating tunable quantum
materials, including unconventional superconductors and quantum spin liquids.
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Supramolecular metal complexes (SMCs) are a highly
versatile class of metal-organic materials that combine
flexible design, widely tuneable properties, and facile
access to large scale structures via molecular self-assembly
[1]. The ability to tune the lattice geometry, the magnetism
and spin-orbit coupling arising from the metal atoms within
these complexes, along with the diverse interactions with
the substrate, has led to the prediction of a multitude of
extraordinary electronic properties exhibited by SMCs
[2,3]. Only a handful of these effects has been realized
in practice, including the manifestation of magnetic proper-
ties [4,5], surface-state engineering [6], and the realization
of structures potentially hosting topologically nontrivial
band structures [7].

While SMCs can host intrinsic exotic states, creating
heterostructures with proximity effects offers even more
possibilities. For example, combining magnetic impurities
with superconductivity can give rise to Yu-Shiba-Rusinov
(YSR) states [8–10]. Arranging such impurities in 1D and
2D lattices together with a suitable magnetic texture and
spin-orbit interactions provides a route to various artificial
topological superconducting states [11–19]. Even though
YSR bands have been successfully achieved in assemblies
of individual magnetic atoms, and with inorganic chains
and layers [19–24], the emergence of YSR bands in
molecular systems still remains elusive [25–28]. The
downside of this approach is that molecular systems on
typical bulk superconducting substrates combine the large
lattice constants of SMCs with small YSR orbitals. This
leads to very limited overlap between the YSR states,
hindering the potential creation of YSR bands. In addition,
magnetic coupling between the SMC building blocks is
typically small.
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NbSe2 has been shown to host YSR states with spatially
extended orbitals due to its quasi-2D character [29–31]. We
demonstrate that this allows for a significant overlap of the
YSR states in SMC-NbSe2 heterostructures resulting in the
formation of robust YSR bands. Furthermore, we show the
presence of antiferromagnetic coupling within the SMC
layer by synchrotron-based x-ray absorption spectroscopy
(XAS) and magnetic circular dichroism (XMCD). Together
with the triangular SMC lattice, this results in magnetic
frustration giving rise to an unconventional 3 × 3 recon-
struction in the magnetic ground state. This modulation is
directly reflected in the local density of states (LDOS) of
the YSR bands that we probe via scanning tunneling
microscopy (STM) and scanning tunneling spectroscopy.
The successful synthesis of magnetically coupled SMC on
NbSe2 and the formation of YSR bands thus provides an
archetypal platform for engineering unconventional quan-
tum phases in SMC-superconductor hybrid systems.
Heterostructure ofNiDCA3 onNbSe2—The STM image

in Fig. 1(a) shows the results of the growth of a single-layer
NiDCA3 (DCA ¼ dicyanoanthracene) SMC on NbSe2
(details of the sample preparation are given in the
Supplemental Material (SM) [32]). The bright areas are
self-assembled SMC islands extending over tens of nano-
meters, with smaller size SMC clusters randomly distrib-
uted between them. A smaller area STM image [Fig. 1(b)]
reveals the triangular lattice of the SMC, which has the
structure matching the density functional theory (DFT)
calculations shown in Fig. 1(c). The building unit of the
SMC consists of three DCA molecules surrounding a Ni
atom, forming a NiDCA3 single complex arranged in a
triangular lattice. This metal coordination is similar to the
earlier results on Co-DCA and Cu-DCA networks on
graphene and NbSe2 and in a stark contrast with the
close-packed assembly of pure DCA molecules on
NbSe2 [33,61,62]. The magnetic Ni atoms create a tri-
angular lattice of magnetic impurities on the superconduct-
ing NbSe2 substrate [Fig. 1(c)], with an experimentally
determined lattice constant of 2.03 nm that matches the
value of 2.07 nm calculated by DFT [32]. The dI=dV

spectra taken on top of Ni atom and DCAmolecules show a
broad peak between 1.5 and 2 V [Fig. 1(d)], representing
the typical metal-ligand bonding orbital features formed in
the single complex (see Fig. S1 in the SM) [33,34].
Emergence of Yu-Shiba-Rusinov bands—A single mag-

netic impurity on top of a superconductor induces a pair of
YSR states inside the superconducting gap [8–10,21].
Analogous to the electronic lattice, the overlap of YSR
states leads to their hybridization and thus to the formation
of YSR bands. These appear as broad features in the
spectral function rather than the sharp peaks stemming
from single states. We investigated this using STM with a
superconducting NbSe2 tip that improves the energy
resolution of the experiment and, more importantly, the
stability of the measurements on the molecular assemblies
[32]. Our experimental observations on SMCs on NbSe2
confirm the expected transition from single YSR states to
YSR bands: when an isolated single complex is positioned
on NbSe2 [Fig. 2(a)], two sharp peaks appear in the
tunneling spectroscopy symmetrically around the Fermi
level [Fig. 2(b)]. As these single complexes form a SMC
lattice [Fig. 2(c)], the sharp peaks in the tunneling spectrum
become broader and weaker in intensity [Fig. 2(d)]. This is
a sign of strong hybridization and a band formation, which
is enabled by the large spatial extent of YSR states of
NbSe2 [29–31] and leads to a significant overlap of these
states between neighboring single complexes. Another sign
of YSR band formation, as we will show in the following, is
that there is a strong YSR LDOS across the whole unit cell
of the SMC. Alternatively, the observed change in the YSR
states could be due to the change in the effective temper-
ature of the instrument or due to Pauli depairing. Both of
these scenarios lead to changes in the spectroscopy of the
superconducting gap, which we do not observe.
One of the advantages of our work, stemming from the

large unit cell and extended YSR orbitals, is the further
insight into spatial behavior of the YSR bands when probed
by STM. This can reveal information about the orbital
nature of the electronic state that induces the YSR state.
While numerous studies have reported this for coupled

FIG. 1. Magnetic NiDCA3 SMC on superconducting NbSe2. (a),(b) Large area STM image [(a) V ¼ 1.73 V, I ¼ 10 pA] and small
area STM image [(b) V ¼ 1 V, I ¼ 5 pA)] of NiDCA3 SMC on NbSe2. (c) DFT calculated structure of the NiDCA3 SMC on the NbSe2
substrate (substrate atoms not shown). (d) dI=dV spectra measured on top of the DCA molecule (orange) and Ni atom (yellow) within
the NiDCA3 SMC.
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YSR dimers and chains, research efforts focused on 2D
YSR lattices remain notably limited [23,24]. The LDOS
map in Fig. 3(b) visualizes the YSR band, which was
measured on the area shown in Fig. 3(a). The intensity of
the YSR bands is particularly concentrated around the
central Ni atom of each single complex, where DFT finds
maximal spin density. However, due to the remarkable
spatial extent of the YSR states, a pronounced intensity
pattern is visible across the whole unit cell even where the
spin density vanishes [Fig. 3(c)]. The additional long-range
modulation of the YSR band occurring over several unit
cells shown in Fig. 3(a) is due to a magnetic ground state
(see below).
Magnetism of Ni atoms from XAS and XMCD—To gain

insight into the electronic configuration of the Ni atoms in
the SMC, XAS and XMCD measurements were conducted
at the DEIMOS beamline of the SOLEIL synchrotron [32].
Figure 3(d) shows the spectra collected at the L2;3 edges of
Ni exhibiting a characteristic 3d8 line shape [63]. The large
XMCD signal indicates a high spin configuration with a
triplet S ¼ 1 ground state. Angular-dependent XAS and
XMCD measurements reveal a weak magnetic anisotropy,
with a greater magnetization along the out-of-plane direc-
tion [32]. To quantitatively analyze the magnetic state of the
Ni atoms, we performed a fitting procedure using simulated
spectra based on atomic multiplet calculations. The calcu-
lations considered a Ni 3d8 configuration, accounting
for intra-atomic electron-electron interactions, spin-orbit

coupling, crystal field effects within the C3v symmetry, and
an external magnetic field [32]. The result of the fit,
overlaid to the experiment in Fig. 3(d), supports the inferred
3d8 configuration with a S ¼ 1 triplet ground state and
allows quantifying a value for the magnetic anisotropy of
about 0.1 meV. While the multiplet model nicely repro-
duces the shape of both XAS and XMCD spectra, the
amplitude of the XMCD signal appears to be slightly
overestimated. As discussed in the following section, the
inclusion of antiferromagnetic interactions between the Ni
atoms enables a comprehensive reproduction of the XMCD
amplitude at all magnetic fields and temperatures.
Additionally, we computed the projected density of states
(PDOS) for the Ni d orbitals [Fig. 3(e)] by DFT and
determined the orbital occupation of 3d8 magnetic state for
the Ni atoms based on inputs from x-ray absorption
spectroscopy [Fig. 3(d)]. These results demonstrate that
the studied SMC realizes a S ¼ 1 lattice.
To unravel the nature and strength of the magnetic

interactions in the SMC, we acquired magnetization loops
by measuring the XMCD signal [Fig. 3(d), down], while
sweeping the applied magnetic field over a range between
−6 and þ6 T, and at temperatures from 2 to 50 K. The
curve acquired at 2 K shown in Fig. 4(a) shows a smooth
reversible loop, with no hysteresis or magnetization jumps
between the backward and forward branch indicating the
absence of stable magnetic structures at that temperature.
However, the amplitude and slope of the curve are lower
than the expected values of a S ¼ 1 Brillouin function at
T ¼ 2.0 K (black solid line). Including the full multiplet
structure (red solid line) only marginally improves the
discrepancy between experiment and theory. The same type
of discrepancy appears in the magnetic susceptibility
extracted from the magnetization loops as a function of
temperature [see Fig. 4(b)], with both S ¼ 1 Brillouin and
full multiplet model not capturing the experimental trend.
The model improves remarkably by assuming the presence
of antiferromagnetic interactions through n nearest-neigh-
bor pairwise exchange Jex resulting in a Curie-Weiss
temperature TCW ¼ −½SðSþ 1Þ=3kB�nJex [64], which we
take as a free parameter of the fit (green solid line). The
combination of multiplet calculations and the just men-
tioned antiferromagnetic interaction provides an excellent
agreement with the experiment for a TCW ¼ −2.5� 0.4 K,
which corresponds to an exchange energy of about
0.2 meV. This indicates that the exchange interaction
between the Ni atoms dominates over the magnetic
anisotropy. The relation between TCW and the ordering
Néel temperature TN depends on the geometry of the spin
lattice and on the neighbor order contributing to the
magnetic coupling. For the case of a frustrated triangu-
lar-type lattice where only the first nearest neighbors are
considered [64], TN ¼ −TCW=2 ¼ 1.2� 0.2 K, i.e., lower
than the base temperature for XMCDmeasurements, in line
with what was observed above. The low Curie-Weiss and

FIG. 2. Evolution from a single magnetic impurity to a lattice of
magnetic impurities. (a) STM image of isolated NiDCA3 single
complex (V ¼ 1 V and I ¼ 5 pA). (b) dI=dV spectra measured
with a superconducting tip on NbSe2 (gray) and on Ni atom
(yellow) and DCA molecule (orange) of the isolated NiDCA3

single complex. (c) STM image of NiDCA3 SMC on NbSe2
(V ¼ 1 V and I ¼ 10 pA). (d) dI=dV spectra measured with
superconducting NbSe2 tip on NbSe2 (gray) and on the Ni
(yellow) and DCA (orange) within the NiDCA3 SMC.
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Néel temperatures are consistent with the relatively large
distances and absence of chemical bonds between the
single complexes.
3 × 3 magnetic order from STM measurements—The

combination of antiferromagnetic coupling and a frustrated
triangular lattice can give rise to exotic magnetic ground
states, such as a quantum spin liquid or 120° Néel order. To
determine the ground state of the SMC, we map the
periodicity of the YSR signal with STM at a temperature
of 350 mK, i.e., below the expected ordering temperature of
1.25 K. The magnetic order can be imprinted in the YSR
states as the energy and density distribution of YSR states
depend on the relative angle between magnetic moments.
The STM results in Figs. 4(c),(d) show dI=dVðq⃗;VÞ, an fast
Fourier transform of a LDOS map at the energy of the YSR
bands. The main features here are the Bragg peaks (red
circles) and 3 × 3 peaks (blue circles). Within the q⃗
resolution of the dI=dVðq⃗;VÞ, our data suggests that the
3 × 3 peaks are aligned with the Bragg peaks. Upon
applying an external magnetic field of B ¼ 4 T, at which
there is no observable superconducting gap in the tunneling
spectroscopy [65], the Bragg peaks remain while the 3 × 3
peaks disappear. This suggests that the 3 × 3 peaks are

connected to the YSR bands that rely on superconductivity.
Alternatively, a magnetic field of 4 T could align the spins
into a ferromagnetic structure, destroying the 3 × 3 super-
cell. Both of these explanations support the magnetic
ground state reconstruction that is imprinted in the YSR
bands. The 3 × 3 supercell of YSR bands could also arise
due to a moiré pattern, where the registry of Ni atoms with
respect to Se atoms of NbSe2 repeats on a 3 × 3 supercell.
Similarly, the pattern could appear due to a repeating
registry between the Ni atoms and 3 × 3 charge density
wave of NbSe2. However, our analysis shows that these
cases can be ruled out [32]. Therefore, the supercell is
likely to arise from a 3 × 3 magnetic order of the Ni atoms
within the SMC.
Besides, there are additional peaks in the dI=dVðq⃗;VÞ,

and even though we cannot determine their exact origin at
this point, they are not related to the superconducting state
as they appear the same at 0 T and 4 T.
Theoretical modeling—To explain how the magnetic

reconstruction can be observed in the STM signal, we
present in Figs. 4(e)–(g) model calculations for a system
with magnetic reconstruction shown in Fig. 4(e). The
magnetic ordering induces an exchange coupling in the

FIG. 3. Spatial distribution of the YSR bands and electronic configuration of the Ni. (a) STM image of NiDCA3 SMC on NbSe2
(V ¼ 1 V and I ¼ 10 pA). (b) dI=dV map of the area shown in (a) at V ¼ −1.44 mV, corresponding to the energy of the YSR band
(feedback parameters V ¼ 4 mV, I ¼ 80 pA, and Vmod ¼ 100 μV). (c) Spatial distribution of the spin density of NiDCA3 on NbSe2,
calculated by DFT. (d) XAS and corresponding XMCD of the NiDCA3 on NbSe2 at the Ni L2;3 edges, acquired at normal incidence.
Experiments (blue lines) are compared with multiplet calculations performed for a 3d8 configuration neglecting (green dashed lines) or
including (red dashed lines) a magnetic coupling among the Ni centers; see text for more details (Tsample ¼ 1.9 K, magnetic field
B ¼ 6.0 T). (e) PDOS of Ni 3d orbitals within the NiDCA3 SMC, calculated by DFT. The structure is shown in the inset, where the light
blue spheres correspond to Nb atoms, yellow to Se atoms, red to Ni atoms, grey to C atoms, blue to N atoms, and white to H atoms.
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underlying substrate, leading to a modulated exchange
profile [32]. This phenomenology is illustrated here with an
Ising-like 3 × 3 magnetic configuration, realizing a mini-
mal ground state with strong out-of-plane anisotropy. In the
case of weaker out-of-plane anisotropy, noncollinear con-
figurations featuring 3 × 3 periodicity would be consistent
with our observations as analyzed in the SM [32]. The
magnetic modulation translates into the modulation of the
energy of YSR states, reflecting the broken translational
symmetry of the magnetic structure. The energy modula-
tion of the YSR states can be visualized as a LDOS
modulation at an in-gap energy featuring YSR modes
[Fig. 4(f)]. In stark contrast, in the absence of

superconductivity or a magnetic superstructure, no addi-
tional peaks are observed in the fast Fourier transform of
the dI=dVðq⃗;VÞ signal [Fig. 4(g); see SM [32] for details].
While the STM experiments do not directly probe the
magnetism of the SMC, the interplay between magnetism
and superconductivity translates the magnetic texture into a
spatial modulation of the YSR bands that can be seen in the
STM experiments. This allows visualizing frustrated mag-
netic orders directly in STM and scanning tunneling
spectroscopy experiments.
Conclusions—We have successfully synthesized a mag-

netic SMC on a quasi-2D superconductor NbSe2, and
investigated its electronic and magnetic properties using
STM and XMCD. The STM experiments demonstrate that
this heterostructure of a magnetic lattice and a super-
conductor leads to the emergence of YSR bands spanning
the entire unit cell of the SMC. Furthermore, combining
XMCD and STM results, we discovered an exotic 3 × 3

antiferromagnetic order of the SMC. We use STM in a
novel and unique way to extract information about the spin
texture of the system, which is imprinted in the YSR bands.
These results open up an extremely tunable path toward
realizing novel quantum phases, such as topological super-
conductivity or quantum spin liquids using SMC-super-
conductor heterostructures. Here, the tunability stems from
the choice of metal atoms, molecules, and the substrate,
which allows for a combination of different ingredients for
designing a wide range of physical systems.
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